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Abstract

Objectives—We applied three statistical approaches for evaluating associations between prenatal 

urinary concentrations of a mixture of phthalate metabolites and birth weight.

Methods—We included 300 women who provided 732 urine samples during pregnancy and 

delivered a singleton infant. We measured urinary concentrations of metabolites of di(2-

ethylhexyl)-phthalate, di-isobutyl-, di-n-butyl-, butylbenzyl-, and diethyl phthalates. We applied 1) 

linear regressions; 2) classification methods [principal component analysis (PCA) and structural 

equation models (SEM)]; and 3) Bayesian Kernel Machine Regression (BKMR), to evaluate 

associations between phthalate metabolite mixtures and birth weight adjusting for potential 
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confounders. Data were presented as mean differences (95%CI) in birth weight (grams) as each 

phthalate increased from the 10th to the 90th percentile.

Results—When analyzing individual phthalate metabolites using linear regressions, each 

metabolite demonstrated a modest inverse association with birth weight [from −93 (−206, 21) to 

−49 (−164, 65)]. When simultaneously including all metabolites in a multivariable model, 

inflation of the estimates and standard errors were noted. PCA identified two principal 

components, both inversely associated with birth weight [−23 (−68, 22), −27 (−71, 17), 

respectively]. These inverse associations were confirmed when applying SEM. BKMR further 

identified that monoethyl and mono(2-ethylhexyl) phthalate and phthalate concentrations were 

linearly related to lower birth weight [−51(−164, 63) and −122 (−311, 67), respectively], and 

suggested no evidence of interaction between metabolites.

Conclusions—While none of the methods produced significant results, we demonstrated the 

potential issues arising using linear regression models in the context of correlated exposures. 

Among the other selected approaches, classification techniques identified common sources of 

exposures with implications for interventions, while BKMR further identified specific 

contributions of individual metabolites.

Keywords

chemical mixtures; principal component analysis; structural equation models; Bayesian Kernel 
Machine Regression

1. Introduction

General population exposure to potentially harmful environmental chemicals is widespread 

and varies throughout lifespan in terms of chemical and dose. Phthalates, for example, a 

class of known endocrine disrupting chemicals, are used in many consumer products 

including some plastics, personal care products, food, and medications, and have been 

associated with a variety of health outcomes (DiVall, 2013; Ejaredar et al., 2015; Hauser & 

Calafat, 2005; Mariana et al., 2016). Epidemiological studies have demonstrated 

associations of certain prenatal phthalate metabolite concentrations with lower birth weight 

and reduced fetal growth (Ferguson et al., 2016; Huo et al., 2015; Smarr et al., 2015; Veiga-

Lopez et al., 2015). However, most of these studies analyzed one phthalate metabolite at a 

time, without considering chemical interactions, or effects of other chemicals that might 

confound the observed association. In fact, possible additive or multiplicative interaction 

effects between these metabolites have rarely been examined.

The National Institute of Environmental Health Sciences (NIEHS) has recently encouraged 

the field to move beyond the traditional “one chemical at a time” approach to evaluating 

effects of environmental chemical mixtures on health outcomes (Birnbaum, 2012). In 2015, 

the NIEHS conducted a workshop to identify and explore potential methods for analyzing 

chemical mixtures in epidemiological studies. These methods can be broadly classified as 

standard regression, classification and prediction [e.g., principle component analysis (PCA), 

structural equation modeling (SEM)], exposure-response surface estimation [e.g., Bayesian 

Kernel Machine Regression (BKMR), Exposure Surface Smoothing (ESS)] (Taylor et al., 
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2016), and variable selection/shrinkage (e.g., least absolute shrinkage and selection 

operator). Nonetheless, few studies have applied these techniques to assess environmental 

chemical mixtures and health outcomes (Agier et al., 2016; Bobb et al., 2015; Lee et al., 

2018; Lenters et al., 2015; Maresca et al., 2016; Park et al., 2017; Stafoggia et al., 2017; 

Valeri et al., 2017), and most of these studies that have been conducted on mixtures lack a 

comparison of the results using different methods, with a few exceptions (Agier et al., 2016; 

Sun et al., 2013; Valeri et al., 2017). In the present study we explored and compared three 

methods: 1) linear regression approaches, 2) classification methods (PCA and SEM), and 3) 

BKMR to evaluate mixtures of prenatal urinary phthalate metabolite concentrations in 

relation to birth weight in a prospective cohort study of pregnant women from a fertility 

clinic---a population with potential increased susceptibility to these chemicals (Messerlian et 

al., 2013).

2. Methods

2.1. Study population

The Environment and Reproductive Health (EARTH) Study is an ongoing, prospective 

cohort designed to identify environmental and dietary determinants of fertility and 

pregnancy outcomes among couples presenting to Massachusetts General Hospital (MGH) 

Fertility Center (Boston, MA). Women were eligible if they were age 18 to 45 years at 

enrollment. The details of the EARTH study have been described previously (Messerlian et 

al., 2018). The present analysis included women who contributed at least one urine sample 

during pregnancy for measurement of phthalates and delivered a singleton live born infant 

between 2005 and 2016. For women with more than one pregnancy during the study period 

(n=15), only their first infant was included in our analysis. Therefore, the present study 

consisted of 300 mother-infant pairs, for whom we collected a total of 732 urine samples (1 

to 3 per woman) during the corresponding pregnancies. Trained research staff obtained 

informed consent and the study was approved by the Human Studies Institutional Review 

Boards of the Partners, Harvard T.H. Chan School of Public Health, and the Centers for 

Disease Control and Prevention (CDC).

2.2. Urinary phthalate metabolite measurements

Women collected spot urine samples during their first, second, or/and third trimesters of 

pregnancy in sterile polypropylene cups. Specific gravity(Christensen et al.) was measured 

at room temperature using a handheld refractometer within a several hours (typically within 

1 hour) after urine collection (National Instrument Company, Inc., Baltimore, MD, USA). 

The urine was divided into aliquots and frozen at −80°C. Samples were shipped on dry ice 

overnight to the CDC (Atlanta, GA, USA).

We used on-line solid phase extraction coupled with high-performance liquid 

chromatography isotope dilution-tandem mass spectrometry to quantify the metabolites of 

di(2-ethylhexyl) phthalate (DEHP): mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), 

mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and the metabolites of di-isobutyl-, di-

n-butyl-, butylbenzyl-, diethyl-phthalates: mono-isobutyl phthalate (MiBP), mono-n-butyl 
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phthalate (MBP), monobenzyl phthalate (MBzP) and monoethyl phthalate (MEP), 

respectively. The standard quality control procedures have been previously described (Silva 

et al., 2007; Ye et al., 2005) The limit of detection (LOD) was 0.5–1.2 μg/L for MEHP, 0.2–

0.7 μg/L for MEHHP and MEOHP, 0.2–0.6 μg/L for MECPP, 0.1–0.2 μg/L for MCPP, 0.2–

0.3 μg/L for MBzP, 0.4–0.8 μg/L for MEP, and 0.4–0.6 μg/L for MBP.

2.3. Outcome assessment

We obtained infant birth weight in grams and gestational age at delivery in weeks from 

hospital medical records. For women who did not deliver at MGH (n=43), we estimated 

gestational age at delivery according to women’s modes of conception. Specifically, for 

women who underwent in vitro fertilization (IVF) we used the formula: (date of delivery-

date of the embryo transfer + day of transfer+14) in accordance with the American College 

of Obstetricians and Gynecologists (ACOG) guideline (Obstetricians & Gynecologists, 

2014); for women who underwent intrauterine insemination (IUI) or conceived naturally, we 

calculated gestational age from the date of delivery minus the cycle start date.

2.4. Covariates Assessment

At enrollment, study staff administered a questionnaire regarding demographic factor, 

personal and family history, and lifestyle factors. Participants also completed a detailed take-

home questionnaire on lifestyles, medical and reproductive history. Participants’ weight and 

height were measured by trained research staff. Body mass index (BMI) at enrollment was 

calculated as weight (in kilograms) per height (in meters) squared. Infertility diagnosis by a 

physician was assigned to each patient based on the Society for Assisted Reproductive 

Technology criteria (Mok-Lin et al., 2010; Society for Assisted Reproductive Technologies 

(SART)), and classified as male factor, female factor or unexplained infertility. Women in 

this study achieved pregnancy by IVF, IUI, or naturally without medical intervention 

(naturally conceived without IVF or IUI procedures).

2.5. Statistical Analysis

Demographic characteristics of the study participants were reported using means and 

standard deviations (SDs) or counts with percentages. Phthalate metabolite concentrations 

were adjusted for urinary dilution using the following formula: Pc = P[(1.014 - 1)/SG - 1], 

where Pc is the SG-adjusted phthalate metabolite concentration (μg/L), P is the measured 

phthalate metabolite concentration (μg/L), and 1.014 is median SG level in the study 

population (Smith et al., 2012; Teass et al., 1998). The very small percentage of non-

detectable phthalate metabolite concentrations were replaced with a value equal to the LOD 

divided by square root of 2 prior to SG adjustment (Hornung & Reed, 1990). When multiple 

urine samples were available, we calculated the geometric mean of urinary metabolite 

concentrations for each individual phthalate for each woman. Due to right skewedness, 

urinary phthalate concentrations were loge-transformed for all statistical analyses.

Potential confounders were selected a priori for inclusion in adjusted models based on prior 

knowledge (Horton & Crump, 1958; Kawwass et al., 2013; Nelson & Lawlor, 2011) using a 

directed acyclic graph. We also adjusted for predictors of birth weight (infant sex, maternal 

height, parity, and gestational age at delivery) to help reduce random variability in the model 
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(Schisterman et al., 2009). All models included the following covariates: gestational age 

(weeks), gestational age square, infant sex (male/female), maternal age (years), pre-

pregnancy BMI (kg/m2), height (cm), education (college or higher/<college), smoking 

history (ever/never), infertility diagnosis (male factor/female factor/unexplained), parity 

(nulliparous/parous), season of conception (Jan–March/April–June/July–Sept/Oct–Dec), and 

method of conception (IVF/IUI/natural). Since gestational age may be on the causal pathway 

leading from phthalates exposure to birth weight (Polanska et al., 2016; Weinberger et al., 

2014), we also replicated our final model (BKMR) in a sensitivity analysis when birth 

weight z-scores were considered. Gestational age-adjusted birth weight z-scores were 

calculated by taking the residuals of linear regression models of birth weight on gestational 

age, modeled with restricted cubic splines for additional smoothness (Hutcheon et al., 2013). 

Correlations between loge-transformed urinary phthalate concentrations were assessed using 

Spearman correlation coefficients (Figure 1).

2.6. Statistical approaches for chemical mixtures

A wide variety of statistical approaches have been proposed to assess the health effects of 

environmental mixtures in epidemiological studies (Bobb et al., 2015; Sun et al., 2013; 

Taylor et al., 2016). As reported from a recent NIEHS workshop (Taylor et al., 2016), these 

techniques can generally be classified as falling into one of four categories: (1) linear 

regression approaches, (2) classification and prediction approaches, (3) exposure-surface 

estimation, (4) variable selection or/and variable shrinkage approaches. In this study, we 

compared three of these approaches including linear regression approaches, two 

classification approaches using PCA and SEM for data visualization, and BKMR, a recently 

proposed method for the estimation of the exposure-response surface (Bobb et al., 2015; 

Valeri et al., 2017). The estimates were presented as differences [95% confidence intervals 

(CI)] in birth weight (grams) as each individual phthalate was increased from the 10th to the 

90th percentile.

Approach 1 – Linear regression approaches—We first evaluated the association 

between each chemical and the birth weight outcome in separate linear regression models. 

The main limitation of this approach is that it does not take into account the association with 

other exposures. Even if one could simultaneously evaluate the mixture of exposures in a 

mutually-adjusted regression model, given that exposures are highly correlated, multiple 

regression models can become unstable and this approach may provide unreliable results 

(Rosner, 2015). In addition, while two-way interactions between metabolites can be 

incorporated, model instability may still appear due to collinearity of exposures. Other 

statistical methods, as described below, can provide alternatives to take into account such 

high-dimensional correlation structures.

Approach 2 – Principal component analysis (PCA) and structural equation 
modeling (SEM)—PCA reduces a large number of correlated variables to a smaller 

number of uncorrelated components while retaining as much information as possible of the 

original variables. It is an unsupervised data reduction tool in that no outcome measure is 

taken into consideration. A set of scores (called loading factors) is calculated representing 

how closely the phthalate metabolites conform to identified principal components. In this 
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study, we used PCA with varimax rotation to identify the principal components with 

eigenvalue greater than one (O’Rourke & Hatcher, 2013). We then fitted a linear regression 

model using the principal component scores as the main exposure measures.

We also applied SEM to investigate the association between phthalate mixtures and birth 

weight. We conducted an exploratory factor analysis to reduce the eight urinary phthalate 

metabolite concentrations into two latent constructs. We then built an SEM to estimate the 

associations between the latent constructs and birth weight, and calculated standardized path 

coefficients. Overall SEM fit was assessed using the Comparative Fit Index (CFI), where 

CFI > 0.90 is generally considered as adequate fit (O’Rourke & Hatcher, 2013).

Approach 3 - Bayesian Kernel Machine Regression (BKMR)—BKMR was 

recently proposed as a novel method for investigating environmental mixtures(Bobb; Bobb 

et al., 2015; Valeri et al., 2017). BKMR utilizes a non-parametric approach to evaluate dose-

response relationships, allowing for possible non-linearity and interactions in exposure-

outcome associations, which can often occur in the context of endocrine disrupting 

chemicals (National Research Council, 2014).

In this study, for each subject i=1,…,n, the BKMR model is given by Yi=h(MEPi, MBPi, 

MiBPi, MBzPi, MEHPi, MEHHPi, MEOHPi, MECPPi) + βTZi + ei, where the function h() is 

an exposure-response function that accommodates nonlinearity and/or interaction among the 

mixture components, and Z=Z1,.., Zp are p potential confounders. There are several possible 

choices for specifying the kernel function, and we used the Gaussian kernel, which has been 

applied in simulation studies and real-life scenarios (Bobb et al., 2015; Valeri et al., 2017). 

There are two major approaches for variable selection: component-wise variable selection 

and hierarchical variable selection. In the scenario where phthalate mixture components are 

highly correlated, a hierarchical variable selection will allow us to estimate the effect of 

highly correlated components that would not be identifiable in regression models. After 

fitting the model, BKMR produces estimates of the exposure-response function h() and point 

wise 95% credible intervals, which incorporate the uncertainty due to estimation of high 

dimensional exposures and multiple-testing penalty. Details (Bobb et al., 2015) and 

examples of how to implement the method using the R package are well described 

elsewhere(Bobb).

We used a hierarchical variable selection approach (i.e., we pre-specified DEHP and non-

DEHP groups based on the PCA results) to estimate the exposure-response surface of the 

relationship between eight phthalate metabolites and birth weight. While h(.) is a high 

dimensional response surface, BKMR allows visualization of different cross-sectional views 

of this surface. Specifically, we plotted the relationships of each phthalate metabolite with 

birth weight while fixing the remaining phthalate metabolites at their median levels (Figure 

3). In addition, we also summarized the joint effects of the two phthalate metabolites by 

plotting a dose-response relationship of a single metabolite at various quantiles (e.g., 10th, 

50th, 90th quantiles) of the 2nd metabolite and fixing the remaining six metabolites at their 

median values (Figure 5). Lastly, BKMR also allows one to summarize the effects of an 

individual phthalate metabolite on birth weight. For example, we calculated the mean 

Chiu et al. Page 6

Environ Int. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difference in birth weight when each metabolite was increased from the 10th to the 90th 

percentile while setting the other metabolites at their median concentrations (Figure 4).

The SEM and PCA approaches were implemented using SAS 9.4 (SAS Institute Inc, Cary, 

NC). The remaining statistical analyses were conducted using R (version 3.1.0; R 

Foundation for Statistical Computing) (Bobb et al., 2015).

3. Results

The study consisted of 300 mother-child pairs. A total of 732 prenatal urine samples were 

collected: 59% of women provided three samples, 26% provided two samples and 15% 

provided one sample. The study population was predominantly white (86%), never smokers 

(74%), and college educated (87%). The mean age at enrollment was 34.6 years (SD: 3.8), 

and mean pre-pregnancy BMI was 24.1 (SD: 4.2) kg/m2 (Table 1). Approximately 33% of 

women had a female factor fertility diagnosis at enrollment. 54 % of women conceived via 

IVF, 21% via IUI, while 25% of women conceived naturally without medical intervention. 

The mean birth weight (SD) was 3340 (512) grams; the mean (SD) gestational age at 

delivery was 39.4 (1.7) weeks; and 3.7% of infants were of low birth weight (<2500 grams)

(World Health Organization, 2014).

The urinary concentrations of phthalate metabolites were within the ranges to those found in 

U.S. females, with high detection frequencies ranging from 94% for MBzP to 100% for 

MEP (Supplemental Table S1). Figure 1 shows the correlation matrix between urinary 

concentrations of the eight phthalate metabolites. Globally, metabolites of DEHP highly 

correlated with each other (r ranging from 0.80 to 0.98), while metabolites of non-DEHP 

phthalates were weakly associated with all other metabolites (r <0.35) except for MBP.

None of the individual phthalates or phthalate mixtures produced a statistically significant 

association with birth weight using the three selected approaches. We therefore focused on 

the interpretation of effect estimates in the following sections.

3.1. Linear regression approaches

Table 2 displays associations between maternal urinary concentrations of phthalate 

metabolites and birth weight using basic linear regression models. When we analyzed one 

metabolite at a time, all metabolites had negative but not statistically significant associations 

with birth weight, with adjusted differences in mean birth weight ranging from −93 (CI: 

−206, 21) to −49 (95%CI: −164,65) grams from 10th to 90th percentiles increase in 

metabolite concentrations. When mutually adjusting for other phthalate metabolites in a 

multivariable model, inflation of the estimates and standard errors were noted. Specifically, 

in the mutually adjusted multivariable regression model, the association of MEOHP with 

birth weight became positive, although not significant, with a change in the adjusted mean 

difference increase from −49 (95% CI: −165, 66) grams to 651 (95%CI: −57, 1360) grams, 

likely due to multicollinearity. All remaining phthalate metabolites remained negatively 

associated with birth weight, with beta coefficients ranging from −16 (95%CI: −148, 116) 

grams for MBP to −351 (95%CI: −1041, 340) grams for MEHHP.
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3.2. Principal Component Analysis and Structural Equation Model

Application of PCA yielded an identification of two main components accounting for 53% 

and 18%, respectively, of the variance in urinary metabolite concentrations. Loading factors 

for each metabolite on each of the components are presented in Supplemental Table S2. The 

first principal component, which we named “DEHP component” had high loading factors for 

MEHP, MEHHP, MEOHP and MECPP, while the second principal component, which we 

named “non-DEHP component” had high loading factors for MEP, MBP, MiBP, and MBzP. 

In the multivariable-adjusted models where these two components were included, higher 

DEHP and non-DEHP component scores were related to lower birth weight [adjusted mean 

difference =−23 (95%CI: −68, 22) and −27 (95%CI: −71, 17) grams, respectively (Figure 

2)]. When applying SEM using two latent constructs, the conceptual model provided an 

acceptable fit (comparative fit index=0.96). Results were consistent with PCA, with 

standardized regression coefficients for the DEHP and non-DEHP latent constructs of −0.05 

(95%CI: −0.18, 0.08) and −0.03 (95%CI: −0.14, 0.09), respectively (Supplemental Figure 

S1).

3.3. Bayesian Kernel Machine Regression

We used results from PCA and SEM to assign metabolites into two groups and used a 

hierarchical variable selection within these two groups to estimate the kernel function. 

Although all results from this model yielded wide confidence intervals, BKMR identified 

two specific metabolites, namely MEP and MEHP, which had stronger associations with 

lower birth weight, both with linear relationships (Figure 3). Figure 4 quantifies the 

magnitude of these associations by presenting the mean differences (95%CI) in birth weight 

for a change in concentrations of individual phthalate metabolites from their 10th to 90th 

percentiles [−51 (95%CI: −164, 63) grams for MEP, and −122 (95%CI: −311, 67) grams for 

MEHP]. There was a positive yet non-significant association between MEOHP and birth 

weight [77 (95%CI: −173, 328)]. Other individual phthalate metabolites had no association 

with birth weight. Lastly, we examined the potential interaction between MEP and MEHP 

based on examination of the empirically estimated response surface. Figure 5 shows 

differences in birth weight as a function of MEP, by moving MEHP concentrations from 10th 

to 50th and to 90th percentile (while fixing all other phthalate metabolites to their 50th 

percentile), and vice versa. The parallel exposure-response relationships suggested no 

evidence of interaction between MEP and MEHP.

Results were consistent when evaluating gestational age-adjusted birth weight z-scores. This 

analysis is presented in Supplemental Figure S2, which shows the dose-response 

associations of MEP and MEHP concentration with birth weight z-scores based on BKMR.

4. Discussion

We examined the results of three different statistical approaches to analyzing phthalate 

mixtures in relation to birth weight in the context of a prospective study among women 

seeking fertility treatment. Neither of the applied approaches produced statistically 

significant results between individual phthalates or phthalate mixture and birth weight. 

Despite these non-significant associations, we recognize that such null findings may due to 
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small samples, high within-person variability of urinary biomarkers, survival bias, and 

unmeasured or/and residual confounding. Interpreting the estimates and providing pros and 

cons of different approaches was the primary objective of this study. Using linear regression 

approaches with each individual metabolite analyzed in a separate linear model, there were 

moderate inverse relationships between individual phthalate metabolites and birth weight. 

However, after mutually adjusting for all other metabolites in the same statistical model, 

inflation of the estimates and standard errors were noted, likely due to collinearity. We 

presented two approaches among those proposed (Taylor et al., 2016) to address this 

problem. Classification approaches (PCA and SEM) identified two principal components 

that can largely be interpreted as the DEHP and non-DEHP components, both of which had 

moderate inverse associations with birth weight. BKMR further identified MEP (a 

component of non-DEHP), as well as MEHP (a component of DEHP) as the most important 

contributors to these associations. There was no suggestive evidence of synergistic effects 

between these phthalates based on visualization of the bivariate exposure-response functions 

in BKMR.

Some prior studies have examined the association between urinary phthalate metabolites and 

birth weight, but the findings have been inconsistent. For example, in a birth cohort of 482 

mother-child pairs, Ferguson et al. reported that the sum of maternal urinary DEHP 

phthalate metabolites during pregnancy was inversely associated with estimated or actual 

fetal weight, and this association was strongest for MECPP (Ferguson et al., 2016). In a 

population-based birth cohort study in Spain (n=488 mother-child pairs), Casas et al. showed 

that prenatal urinary MBzP concentrations were positively associated with birth weight 

among boys but not in girls. By contrast, three studies, including a prospective multiethnic 

cohort in New York city (n=404)(Wolff et al., 2008), a case-control study (n=191) in France,

(Philippat et al., 2012) and a recent prospective study from the EARTH cohort (Messerlian 

et al., 2017) (n=321) reported that neither the individual prenatal phthalate metabolites nor 

the grouping of phthalate metabolites based on molecular weight were associated with birth 

weight. Of note, however, in the latter study (Messerlian et al., 2017), Messerlian et al. 
reported that specific phthalate metabolites were associated with lower birth weight among 

IVF-conceived singletons (n=208), but these associations were no longer significant after 

adjusting for paternal phthalate metabolite concentration (Messerlian et al., 2017). Further, 

Messerlian et al. found that paternal urinary concentration of the sum of DEHP metabolites 

was associated with lower birth weight among IVF singletons regardless of adjustment for 

maternal prenatal DEHP concentrations (Messerlian et al., 2017). It is important to point out 

that these studies performed statistical analysis using one phthalate metabolite at a time, 

without accounting for other metabolites that are possibly associated with each other and 

with the outcome. The specific phthalate metabolite identified by individual analysis could 

be potentially confounded by other phthalate metabolites or other correlated chemicals. In 

the present study, when simultaneously including all phthalate metabolites in a single 

regression model, the effect estimates changed substantially, with certain metabolites (e.g. 

MEOHP) switching the sign of the association. As such, our results of the regression 

methods underscore the need to apply appropriate statistical methods that take into account 

the correlation structure of the evaluated biomarkers.
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Classification approaches such as PCA and SEM have been used to investigate the mixture 

of environmental chemicals or pollutants while taking into account multicollinearity. PCA 

has been used to assess urinary phthalate metabolites in the literature (Maresca et al., 2016). 

As metabolites that come from a single parent compound (e.g., MEHP, MEHHP, MEOHP, 

MECPP come from the parent compound, DEHP) and metabolites that have similar 

exposure sources (e.g, MEP and MBP, metabolites of diethyl phthalate and dibutyl phthalate 

respectively are both used in personal care and beauty products)(Hauser & Calafat, 2005) 

are often correlated, the identified principal components (based on the observed variance-

covariance structure of the data) are likely to reflect such exposure patterns. Notably, PCA 

converts a set of observed variables into principal components based on the collinearity 

between the exposure variables rather than the underlying biological effects of a given 

mixture on the outcomes. Therefore, the associations would be masked if phthalates within 

the component have opposite effects on birth weight. In addition, the derived component 

scores are known to be data dependent, which may limit its generalizability across studies. 

However, data from earlier studies including the Columbia Center for Children’s 

Environmental Health study and the U.S. National Health and Nutrition Examination Survey 

have identified similar components (namely DEHP and non-DEHP components) as well as 

component loadings for phthalate exposure (Maresca et al., 2016), suggesting that the 

correlation structure between phthalate metabolite concentrations is similar to some extent 

with the general U.S. population.

Another similar source apportionment method is SEM, which is often used to analyze the 

structural relationship between measured variables and latent constructs. In this study, both 

PCA and SEM suggested inverse associations of DEHP components and of non-DEHP 

component with birth weight. An important distinction between PCA and SEM is that the 

latter assumes the latent constructs “DEHP group” and “non-DEHP group” exert directional 

influence on the measured phthalate metabolite concentrations (i.e., measured biomarker 

concentrations are modeled as a function of the latent construct) presented in Figure 3. In 

addition, SEM accounts for the measurement errors of these latent constructs when assessing 

their associations with birth weight (O’Rourke & Hatcher, 2013), while PCA simply groups 

the measured variables based on the total variance of the observed variables without 

considering uncertainty of principal components in the second step of the regression model 

(O’Rourke & Hatcher, 2013). Further, compared with PCA approach, SEM tends to make 

broader assumptions about linearity and normality distributions for all the paths present in 

the entire SEM (VanderWeele, 2012). Therefore, SEM constitutes as a more powerful tool 

when we attempt to capture a wide range of exposures or simultaneously evaluate numerous 

pathways for different health outcomes of a given population (VanderWeele, 2012).

From the perspective of policy makers and regulatory agencies, PCA and SEM methods are 

attractive as they help to identify common sources of exposure to phthalate mixtures that are 

responsible for adverse health outcomes for regulatory intervention. However, these methods 

have some important limitations. First, both SEM and a regression model incorporating 

principal components as “exposures” assume a linear function between two components (or 

latent constructs) and birth weight. Second, as PCA is agnostic approach to reduce the 

dimension of exposure without considering the correlations with the outcome measure, it is 

unclear whether the group of phthalate metabolites or specific phthalate metabolites within 
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the group was responsible for the inverse association with birth weight. Third, PCA and 

SEM cannot account for interactions among individual phthalate metabolites. In an in vivo 
study, combinations of benzylbutylphalate (BBP) and dibutyl phthalate (DBP) and of DBP 

and diethyl phthalate (DEP) demonstrated synergistic anti-androgenic activity at high doses 

and antagonistic activity at low concentrations (Christen et al., 2012). While it is unclear 

whether phthalate mixtures also exert similar synergistic effects on oxidative stress (Holland 

et al., 2016; Tetz et al., 2013) or epigenetic modifications (LaRocca et al., 2014; Zhao et al., 

2015)(some possible mechanisms affecting fetal growth), such possibility cannot be ruled 

out and cannot be tested using PCA and SEM methods.

Recently, BKMR was introduced as a new approach to study mixtures, in which non-linear 

effect and non-additive relationship with health outcomes can be captured based on a 

flexible kernel function. By using this method we identified two specific metabolites, MEP 

and MEHP, which were associated, in a linear fashion, with lower birth weight. On the other 

hand, MEOHP was positively associated with birth weight, though all confidence intervals 

were somewhat wide. Other individual phthalate metabolites had no association with birth 

weight. Of note is that, as MEHP and MEOHP are grouped as DEHP components (shown in 

the classification analyses), but exert opposite effects on birth weight (shown in the BKMR 

analysis), the associations between DEHP components and birth weight based on PCA and 

SEM approaches may potentially be diluted. Furthermore, while we found no evidence of 

nonlinearity or interactions among phthalate metabolites, given the small sample size, it may 

be difficult to pick up interactions that were in fact present (Coull & Parket, 2015). 

Currently, formal statistical tests for interactions among phthalate in the mixture in BKMR 

are not readily available.

Importantly, although we compared pros and cons of each method, these statistical 

approaches may complement each other and help to optimize the analysis strategies for the 

study of interests. Moreover, while we herein focused on selected approaches, other 

available methods may be more suitable for specific settings. For example, when the effect is 

linear and interactions are not present, a method such as weighted quantile regression could 

represent a more powerful approach (Bello et al., 2017). In addition, there is limited 

knowledge regarding the sensitive window of environmental chemical mixtures. Novel 

methods have recently been proposed such as a distributed lag model (Wilson et al., 2017) 

and lagged kernel machine regression(Liu et al., 2017), which allow researchers to explore 

the effect of mixture across different exposure window. In the specific field of environmental 

reproductive epidemiology, future advances are also necessary to model correlated mixtures 

of exposure between couples for couple-dependent outcomes given the increasing 

recognition of importance of male partners for offspring’s health (Messerlian et al., 2017; 

Sundaram et al., 2017). Lastly, in this paper we investigated different approaches in 

characterizing exposure to phthalate mixtures in relation to a continuous measure. The 

extension of R packages for running BKMR in the cases of non-normal outcomes is 

currently under development.
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5. Conclusions

Humans are exposed to many chemicals simultaneously. In this paper we demonstrated 

potential issues that can arise when using linear regression analyses (either one chemical at a 

time or a mutually adjustment approach) in the context of evaluating a mixture of correlated 

phthalate metabolites. Our example showed that there was a general consistency between 

classification methods (PCA, SEM) and BKMR. Among the selected analytic strategies, 

BKMR represents a flexible approach that allows identifying the specific contribution of 

each included predictors, while also incorporating possible non-linear and interaction 

effects. Classification methods (PCA, SEM), on the other hand, help to identify common 

sources of exposure contributing to health effects. Importantly, optimal analytic strategies 

may depend on study question and underlying exposure-response relationship; applying 

different techniques that complement each other may improve the robustness and 

interpretation of the findings. As modern statistical tools are now available to capture a high 

degree of correlations amongst explanatory variables, future studies should move from one 

chemical at a time approach to conducting a comprehensive risk assessment with attempt to 

capture chemical mixtures on human diseases and well-being.
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Highlights

• We applied and compared three statistical approaches for evaluating the 

associations between a mixture of prenatal urinary phthalate metabolites and 

birth weight.

• We demonstrated potential issues arising using linear regression models 

(either one chemical at a time approach or a mutual adjustment approach) in 

the context of correlated exposures.

• Principal component analysis and structuring equation modeling identified 

common sources of exposures with implications for intervention.

• Bayesian Kernel Machine Regression further identified specific contributions 

of individual metabolites to reduced birthweight.

Chiu et al. Page 16

Environ Int. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Correlation plot of the urinary concentrations of eight phthalate metabolites

Dot size is proportional to the magnitude of Spearman correlation coefficients.
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Figure 2. 
The associations of principal components of phthalate metabolites and birth weight among 

300 mother-child pairs in the Environment and Reproductive Health (EARTH) Study.
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Figure 3. 
Dose-response function (95% credible intervals) between selected metabolite concentrations 

(i.e., A) MEP and B) MEHP) and birth weight while fixing other phthalate metabolite 

concentrations at median values. The results were estimated by Bayesian Kernel Machine 

Regression, adjusting for gestational age, gestational age square, maternal age, BMI, height, 

education, smoking, infertility diagnosis, parity, method of conception, season of 

conception, and infant sex.
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Figure 4. 
Mean differences in birth weight (estimates and 95% confidence intervals) as a function of 

phthalate metabolite concentrations in the EARTH study. Point estimates show the 

difference in mean birth weight when each phthalate metabolite was increased from the 10th 

to the 90th percentile of its distribution, while fixing other phthalate metabolite 

concentrations at their median concentrations. The results were estimated by Bayesian 

Kernel Machine Regression, adjusting for gestational age, gestational age square, maternal 

age, BMI, height, education, smoking, infertility diagnosis, parity, method of conception, 

season of conception, and infant sex.
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Figure 5. 
Mean differences in birth weight as a bivariate exposure-response function of A) MEP at 

10th, 50th, and 90th percentile of MEHP B) MEHP at 10th, 50th, and 90th percentile of MEP, 

while other phthalate metabolite concentration are fixed at the median values. The results 
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were estimated by Bayesian Kernel Machine Regression, adjusting for gestational age, 

gestational age square, maternal age, BMI, height, education, smoking, infertility diagnosis, 

parity, method of conception, season of conception, and infant sex.
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Table 1

Baseline characteristics among 300 pregnant women with a live singleton birth in the Environment and 

Reproductive Health (EARTH) Study.

Characteristic

Mean ± SD or N (%)

Overall Providing 1 sample Providing 2 samples Providing 3 samples

N 300 44 79 177

Age (years) 34.6 ± 3.8 34.3 ± 4.2 34.8 ± 3.5 34.6 ± 3.9

Pre-pregnancy BMI (kg/m2) 24.1 ± 4.2 24.1 ± 3.9 24.4 ± 4.2 23.9 ± 4.3

Ever smokers 78 (26%)

Race

 Caucasian 259 (86%) 37 (84%) 68 (86%) 154 (87%)

 Black/African American 7 (2%) 2 (5%) 1 (1%) 4 (2%)

 Asian 23 (8%) 3 (7%) 7 (9%) 13 (7%)

 Other 11 (4%) 2 (5%) 3 (4%) 6 (3%)

Education

 High school graduate or less 25 (8%) 5 (11%) 6 (8%) 14 (8%)

 Some college 14 (5%) 6 (14%) 2 (3%) 6 (3%)

 College graduate or higher 261 (87%) 33 (75%) 71 (90%) 157 (89%)

Infertility diagnosis

 Male factor 78 (26%) 11 (25%) 16 (20%) 51 (29%)

 Female factor 99 (33%) 17 (39%) 28 (35%) 54 (31%)

 Unexplained 123 (41%) 16 (36%) 35 (44%) 72 (41%)

Methods of conception

 IVF 163 (54%) 23 (52%) 45 (57%) 95 (54%)

 IUI 63 (21%) 10 (23%) 11 (14%) 42 (24%)

 Natural 74 (25%) 11 (25%) 23 (29%) 40 (23%)

Gestational age (weeks) 39.4 ±1.6 39.2 ± 2.1 39.4 ±1.6 39.4 ±1.6

Birth weight (grams) 3341 ±512 3355 ± 630 3362 ± 449 3328 ±508

Male Infant gender 156 (52%) 21 (48%) 43 (54%) 92 (52%)
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Table 2

The association between individual phthalate metabolites and birth weight (grams) among 300 mother-child 

pair based on linear regression models

Urinary phthalate metabolite One at a time Mutually Adjusted for other Phthalate Metabolites

β (95%CI)1 β (95%CI)1,2

MEP −60 (−172, 52) −49 (−165, 66)

MBP −55 (−154, 44) −16 (−148, 116)

MiBP −51 (−160, 57) −31 (−153, 91)

MBzP −55 (−160, 50) −42 (−162, 79)

MEHP −93 (−206, 21) −163 (−374, 48)

MEHHP −67 (−187, 54) −351 (−1041, 340)

MEOHP −49 (−164, 65) 651 (−57, 1360)

MECPP −71 (−188, 47) −214 (−586, 157)

CI=confidence interval, β estimates represent the mean differences in birth weight (grams) when each metabolite was increased from the 10th to 

the 90th percentiles

1
Adjusted for gestational age, gestational age square, maternal age, pre-pregnancy BMI, height, education, smoking, infertility diagnosis, parity, 

method of conception, season of conception, and infant sex.

2
Additionally adjusted for all the other phthalate metabolites.
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