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ABSTRACT: Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other
adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth.
The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were
measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane
(DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid
(TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC),
head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores.
After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated
THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations
(both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p
for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs,
particularly during the first trimester, was associated with reduced fetal abdominal circumference.

KEYWORDS: disinfection byproducts, intrauterine growth, ultrasound measures, blood THMs, urinary HAAs

■ INTRODUCTION

Disinfection of drinking water has been extensively used to
prevent microbial diseases since the early 20th century.
However, disinfection byproducts (DBPs) are formed uninten-
tionally when natural organic matter in raw water reacts with
the disinfectants (e.g., chlorine and chlorine dioxide). To date,
more than 600 types of DBPs have been identified in drinking
water, among which trihalomethanes (THMs) and haloacetic
acids (HAAs) are the two most abundant species.1,2 Human
exposure to DBPs is chronic and widespread and occurs via
inhalation, ingestion, and dermal absorption in daily water-use
activities.3−5

Animal studies have shown that some DBPs can pass
through the placenta,6 which can lead to intrauterine growth
retardation,7 decreased birth length and weight,7−10 and
increased birth defects in rodent species.11,12 Previous

epidemiological studies also reported associations between
gestational exposure to DBPs and fetal anthropometric
measures at delivery, such as birth weight13−17 and birth
length,18 as well as adverse birth outcomes [e.g., small for
gestational age (SGA) and preterm birth].18−23 However,
evidence linking DBP exposure to intrauterine growth is
sparse. Repeated ultrasound measures reflect the changing rate
of growth in utero and capture specific fetal growth measures
such as abdominal circumference (AC), biparietal diameter
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(BPD), and femur length (FL), which facilitates an
investigation of the effects of DBP exposure on specific
anthropometric parameters during different gestational peri-
ods. In our previous study, we found an inverse association
between the maternal urinary trichloroacetic acid (TCAA)
concentration in late pregnancy and fetal BPD, head
circumference (HC), and FL among 332 mother−infant
pairs.24 However, no studies to our knowledge have explored
the association of exposure to THMs with intrauterine growth
parameters. More importantly, the potential windows of
vulnerability to exposure, which could lead to improved
mechanistic insights for disease development, remain unclear.
Blood biomarkers of THMs and urinary biomarkers of

HAAs are sensitive measures to study low levels of
exposure.25,26 While the elimination half-life of THMs in
humans is relatively short, exposure biomarkers are considered
to reflect steady-state blood concentrations due to the high
frequency of daily exposures and slow partitioning out of
adipose tissue.27 Urinary TCAA and dichloroacetic acid
(DCAA) are potential biomarkers for ingested HAAs.22 In
the present analysis, we evaluated the association of blood
THM and urinary HAA concentrations across pregnancy
trimesters with fetal growth assessed by repeated ultrasound
measurements during pregnancy in combination with weight at
birth. We also explored windows of vulnerability by examining
fetal growth parameters in relation to trimester-specific blood
THM and urinary HAA concentrations.

■ MATERIALS AND METHODS

Study Design. This study comprised pregnant women
from the Xiaogan Disinfection By-Products (XGDBP) cohort

(2015−2017), which has been described in detail previously.22

Briefly, pregnant women less than 14 gestational weeks were
recruited from the Maternal and Child Health Care Service
Center of Xiaonan District between 2015 and 2017. Women
were eligible if they were between 18 and 40 years of age at
time of enrollment, resided in Xiaogan City permanently, were
<14 weeks of gestation, had no self-reported psychiatric or
laboratory-confirmed endocrine diseases (e.g., diabetes and
thyroid diseases), and were carrying a singleton fetus. A total of
2021 women were asked to participate, of whom 1876 (93%)
agreed to partake in the study. Each participant completed a
self-reported questionnaire, underwent a physical examination,
provided a spot urine sample, and had a peripheral venous
blood draw during the first [gestational age (GA) <14 weeks,
median: 9.0 weeks], second (GA 14−27 weeks, median: 16.9
weeks), and third (GA > 27 weeks, median: 31.6 weeks)
trimesters. We excluded 360 women because of spontaneous
abortion (n = 63), induced abortion (n = 33), stillbirths (n =
18), malformation (n = 2), or due to missing data on exposure
(n = 100) or ultrasound measures (n = 144), leaving 1516
women in our present analysis (Figure 1). All participants
provided written consent at enrollment, and the Ethics
Committee of Tongji Medical College approved our study
protocol.

Sample Collection and Analysis. Procedures for sample
collection and DBP quantification have been illustrated in
detail in our previous study.28 In brief, peripheral blood was
drawn from the cubital vein and stored at 4°C before analysis.
Blood chloroform (TCM), bromodichloromethane (BDCM),
dibromochloromethane (DBCM), and bromoform (TBM)
were quantified using a headspace solid-phase microextraction
gas chromatography method.18,29 Spot urine samples were

Figure 1. Flow chart for study participants.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c04926
Environ. Sci. Technol. 2021, 55, 16011−16022

16012

https://pubs.acs.org/doi/10.1021/acs.est.1c04926?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04926?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04926?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c04926?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c04926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


collected using a polypropylene container and frozen at −40
°C until quantification. Urinary DCAA and TCAA were
purified using liquid−liquid extraction and then determined by
a gas chromatograph (Agilent Technologies 6890N, CA).30

For quality control, each analysis run included a blank water
sample (boiled spring water) and two quality controls spiked
with target analytes.28 The limits of detection (LODs) of
TCM, BDCM, DBCM, TBM, TCAA, and DCAA were 1.95
ng/L, 0.45 ng/L, 0.68 ng/L, 2.00 ng/L, 0.50 μg/L, and 1.0 μg/
L, respectively. Because specific gravity (SG) has been
recommended as a more favorable approach for urinary
dilution correction than creatinine,31,32 we measured urinary
SG using a Mindray urine analyzer. Urinary DCAA and TCAA
were SG-corrected using the following formula: Pc = P[(SGmean
− 1)/(SGi − 1)], where Pc is the corrected concentration, P is
the uncorrected concentration, SGi is the SG of the
participant’s urine sample, and SGmean is the mean SG of our
study participants.28

Ultrasound Measurements and Birth Outcomes. Fetal
ultrasound scans were performed to measure the fetal
abdominal circumference (AC), head circumference (HC),
biparietal diameter (BPD), and femur length (FL) during the
second [mean ± standard deviation (SD): 17.7 ± 2.5
gestational weeks] and third trimester (mean ± SD: 32.5 ±
3.0 gestational weeks) by specialized obstetricians at the
Maternal and Child Health Care Service Center of Xiaonan
District. Estimated fetal weight (EFW) was calculated
according to the Hadlock algorithm.33 Birth outcomes (i.e.,
infant sex, birth weight, GA at delivery, and delivery mode)
were abstracted from the hospital medical records. GA was
estimated by a certified obstetrician based on self-reported last
menstrual period and ultrasound evaluation at first-trimester
prenatal visits.22 We constructed GA-specific standard
deviation scores (z-scores) for fetal growth parameters based
on both ultrasound and birth measures using the GAMLSS
package in R software.34,35 Briefly, we modeled AC, HC, BPD,
FL, and fetal weight (EFW and birth weight combined) using a
cubic spline by GA in days based on our study population after
normalizing the parameters using Box−Cox transformations.
The fetal growth z-scores were acquired based on the best-
fitting models according to Akaike’s information criteria, which
represented the percentile of the fetal or birth size at any
specific GA.36

Covariates. At recruitment, we obtained basic character-
istics of study participants via self-reported questionnaire,
which included age, height, marital status, education level,
income, geographic residence setting, sources of drinking
water, and reproductive history. At enrollment and during each
follow-up visit, we also collected information on lifestyle
factors (e.g., smoking status, alcohol consumption, and folic
acid usage), second-hand smoke exposure, maternal weight,
and water-use activities (e.g., daily tap-water consumption,
frequency and duration of bathing/showering, and time
interval since last bathing/showering). Maternal weight was
measured by certificated obstetricians using a multifunctional
anthropometric instrument.
Data Analysis. We performed descriptive statistics for

maternal characteristics [e.g., age, body mass index (BMI) at
enrollment, income, education level, and gravidity], concen-
trations of blood THMs and urinary HAAs, ultrasound
measures (i.e., AC, HC, BPD, FL, and EFW), and birth
outcomes (i.e., birth weight, GA at delivery, delivery mode, and
infant sex). Blood THM and urinary HAA concentrations

below the LODs were replaced by LOD/√2.37 We also
calculated chlorinated THMs (Cl-THMs) as the sum
concentration of TCM, BDCM, and DBCM, brominated
THMs (Br-THMs) as the sum concentration of TBM, DBCM,
and BDCM, and total THMs (THM4) as the sum
concentration of Br-THMs and TCM. Correlations between
DBP biomarker concentrations were evaluated using Spear-
man’s rank correlation coefficients.
We explored associations of blood THM and urinary HAA

concentrations obtained from first, second, and third trimesters
with measures of fetal growth z-scores (i.e., AC, HC, BPD, FL,
and fetal weight z-scores) evaluated during the second and
third trimesters, and at birth, respectively, using linear mixed
models,38 where a random intercept for each participant and a
random slope for GA at the time of fetal growth measurement
(i.e., an ultrasound scan or delivery) were included. To remain
consistent with our previous study,22 blood TCM, BDCM, Cl-
THMs, Br-THMs, and THM4 and SG-adjusted urinary TCAA
and DCAA concentrations were categorized into tertiles at
each pregnancy trimester. Because of the limited detection
rates of blood DBCM and TBM (<49%), a three-level ordinal
variable was created by <60th, 60th−80th, and >80th
percentiles. P for trend was estimated by modeling DBP
tertiles (or categories) as integer values (i.e., 0, 1, and 2). DBP
biomarkers with a detection rate of >50% were also modeled as
continuous variables after log10-transformation and are
presented in the Supporting Information. We separately
assessed the associations between blood THM and urinary
HAA concentrations in the previous trimester and fetal growth
z-scores in the following ultrasound measurement using linear
regression models to identify the potential windows of
vulnerability. Stratified analyses were performed to test
whether the associations between DBP exposures and fetal
growth parameters were modified by infant sex by adding
interaction terms between biomarker concentrations and infant
sex to the models.
Potential confounders were evaluated in a forward stepwise

procedure if their inclusion led to a >10% change in the effect
estimates for any associations between DBP biomarkers and
intrauterine growth parameters. The following covariates were
included in the final models: maternal age (continuous), BMI
at enrollment (continuous), maternal height (continuous),
infant sex (boys vs girls), gravidity (1 vs >1), folic acid usage
during pregnancy (ever vs never), smoking status (ever vs
never), alcohol intake (ever vs never), and education level
(junior school and below, high school, or college and above).
To test the robustness of our results, we conducted several

sensitivity analyses. First, we reanalyzed the associations
between DBP biomarker concentrations and fetal growth z-
scores by excluding women who had ever consumed tobacco
or alcohol during pregnancy (N = 90) or by excluding women
who had only one THM or HAA measurement during
pregnancy (N = 348). Second, we included geographic
residence setting (urban vs rural) and household income
(<3000, 3000−4999, or ≥5000 Yuan/month) as additional
covariates in the mixed regression models to evaluate the
influence of maternal socioeconomic status. Third, to assess
the influence of recent peak exposure events, we adjusted for
the time interval since last showering or bathing due to their
strong influence on THM concentrations.39,40 Fourth, we
included a different set of covariates in the final models based
on the previous literature according to the directed acyclic
graph (DAG):28,41 maternal age (continuous), BMI at
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enrollment (continuous), geographic residence setting (urban
vs rural), household income (<3000, 3000−4999, or ≥5000),
and maternal education level (junior school and below, high
school, or college and above) (Figure S2). Fifth, to assess the
influence of maternal nutritional status, we included maternal
weight gain during pregnancy (continuous) as a covariate in
the mixed models. Finally, we reanalyzed the associations of
blood DBCM and TBM concentrations with fetal growth
parameters by categorizing participants into the following new
three-level exposure groups: the low-exposure group with
concentrations <LOD, the median-, and high-exposure groups
that were equally divided among detectable samples. All
statistical analyses were performed using R software (version
3.6.0, R Foundation for Statistical Computing, Austria).

■ RESULTS
Maternal Characteristics. Pregnant women included in

the study sample were on average (±SD) 26.4 (±4.2) years of
age (Table 1). More than half (64.1%) of mothers reported
their education background as less than high school, 52.6%
lived in an urban setting, and 86.0% reported income as less
than 5000 Yuan/month. Most women (70.6%) had a normal
BMI (18.5−24.9 kg/m2) at enrollment, used folic acid
(94.6%), and reported no smoking (97.3%) or alcohol
consumption (96.3%) during pregnancy.
Distribution of Blood THMs and Urinary HAAs. During

the first, second, and third trimesters of pregnancy, 1281, 963,
and 1113 women with blood drawn were quantified for THM
concentrations, respectively, and 1218, 966, and 1112 women
with urine samples were quantified for HAA concentrations,
respectively. Blood TCM and BDCM and urinary DCAA and
TCAA were detected in ≥79.2% of the samples collected
across pregnancy trimesters, whereas blood DBCM and TBM
were detectable in 42.7 and 48.9% of the specimens,
respectively (Table 2). The median concentrations of blood
TCM, BDCM, Cl-THMs, Br-THMs, and THM4, and SG-
corrected urinary TCAA and DCAA across pregnancy
trimesters were 10.2 ng/L, 0.81 ng/L, 12.0 ng/L, 4.0 ng/L,
17.3 ng/L, 1.7 μg/L, and 7.1 μg/L, respectively. The
correlations between exposure biomarkers are shown in
Table S1. While blood TCM, BDCM, DBCM, and TBM
concentrations were significantly correlated, all Spearman
coefficients were relatively low (all ρ <0.40). We also observed
that basic characteristics and mean exposure concentrations
were similar between the overall participants included in the
present study (N = 1516) and those with full measurements of
THMs and HAAs (N = 766) throughout pregnancy (Table
S2).
Ultrasound Measurements and Birth Outcomes. A

total of 1301 (85.8%) and 1082 (71.4%) infants had
ultrasound measurements during the second and third
trimesters, respectively (Table 3). The crude distribution of
AC, HC, BPD, FL, and fetal weight (EFW and birth weight
combined) by GA at the time of measurement (i.e., GA at time
of ultrasound measures or at birth) is shown in Figure S1. The
mean (±SD) EFW in the second and third trimesters were
222.4 (±165.5) and 1980.8 (±633.3) g, respectively (Table 3).
The mean (±SD) birth weight and GA at delivery were 3309.1
(±415.0) g and 39.2 (±1.3) weeks, respectively; overall, 60.1%
of pregnant women had cesarean delivery and 51.2% of
newborns were male.
DBP Concentrations and Fetal Growth z-Scores. After

adjusting for confounding, we found decreasing AC z-scores

Table 1. Characteristics of Study Participants (N = 1516)

maternal characteristics N mean ± SD or %

age (years) 1516 26.4 ± 4.2
height (cm) 1505 160.1 ± 4.4
geographic residence setting

urban 791 52.6%
rural 712 47.4%

gestational age at study measurements (weeks)
first trimester 1301 9.5 ± 2.3
second trimester 1082 17.7 ± 2.5
third trimester 1170 32.5 ± 3.0

BMI at enrollment (kg/m2)
<18.5 323 21.5%
18.5−24.9 1059 70.6%
≥25 119 7.9%

marital status
married 1445 95.4%
other 69 4.6%

education level
junior school and below 966 64.1%
high school 351 23.3%
college and above 190 12.6%

income (Yuan/month)
<3000 610 40.4%
3000−4999 688 45.6%
≥5000 212 14.0%

gravidity
1 701 46.2%
≥2 815 53.8%

smoking during pregnancy
ever 41 2.7%
never 1475 97.3%

alcohol use during pregnancy
ever 56 3.7%
never 1460 96.3%

second-hand smoke exposure
ever 665 43.9%
never 851 56.1%

folic acid usage during pregnancy
yes 1434 94.6%
no 82 5.4%

main source of drinking water
tap water 779 55.0%
bottled/mineral water 487 34.4%
well water 148 10.5%

time-varying factors
daily tap-water consumption (mL)

0 1786 52.2%
0−500 407 11.9%
>500 1230 35.9%

frequency of bathing/showering (times/week)
<2 607 17.7%
2−6 885 25.8%
>6 1934 56.5%

duration of bathing/showering (minutes)
<10 664 19.4%
10−15 1967 57.4%
>15 795 23.2%

time interval since last bathing/showering (hours)
<12 144 4.2%
12−24 2295 67.0%
>24 987 28.8%
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across tertiles of blood Br-THMs and THM4 concentrations
during pregnancy (i.e., first and second trimesters) (both p for
trend <0.01); the percent change in the AC z-score comparing
the extreme Br-THMs and THM4 tertiles was −14.2% (95%
CI: −23.6, −4.8%) and −12.6% (95% CI: −21.9, −3.3%),
respectively (Table 4). We also found a decreasing AC z-score
across categories of blood TBM concentrations during
pregnancy trimesters (p for trend = 0.03); the percent change
in the AC z-score comparing the second vs first categories of
TBM was −13.5% (95% CI: −23.4, −3.6%). Stratified analysis
showed slightly more pronounced inverse associations between
blood TBM concentrations and the AC z-score among female
infants [% change= −20.1% (95% CI: −36.5, −3.7%)
comparing extreme TBM categories, p for interaction = 0.12,
Table S4]. There was no evidence of any relationship between
urinary HAA concentrations and fetal growth parameters (i.e.,
AC, HC, BPD, FL, and fetal weight z-scores), and between
blood THM concentrations and fetal weight z-scores (i.e.,
EFW and birth weight combined). When trimester-specific
associations between DBP exposures and fetal growth z-scores
were explored, we found that the inverse associations between
blood TBM, Br-THMs, and THM4 concentrations and AC z-
scores were more pronounced when DBP biomarkers were
measured in the first trimester (Figure 2). Blood THM and
urinary HAA concentrations in the third trimester were
unrelated to birth weight (Table S5). The associations
between THM and HAA concentrations and fetal growth z-
scores were materially unchanged when we excluded women
who reported smoking or drinking in pregnancy (Table S6),
when we excluded women who had only one THM or HAA
measurement during pregnancy (Table S7), when we addi-
tionally corrected for geographic residence setting and
household income, time interval since last bathing/showering,
or maternal weight gain during pregnancy, and when we
included a different set of covariates according to our
prespecified DAG (Tables S8−S11). The inverse associations
between TBM and AC z-scores were materially unchanged
when we categorized participants with concentrations <LOD
in the low-exposure group (Table S12).

Table 2. Maternal Distribution of Blood THM and Urinary HAA Concentrations (N = 1516)a

percentile

DBP biomarkers number of samples %>LOD arithmetic mean geometric mean median 20% 40% 60% 80%

THM (ng/L)
TCM 3357 92.6 15.9 9.5 10.2 5.2 8.6 12.1 17.5
BDCM 3357 79.2 0.96 0.80 0.81 0.35 0.71 0.93 1.2
DBCM 3357 42.7 0.91 0.74 <LOD <LOD <LOD 0.76 1.2
TBM 3357 48.9 28.8 4.5 <LOD <LOD <LOD 3.9 15.7
Cl-THMs 3357 − 17.7 11.7 12.0 6.8 10.2 14.0 19.0
Br-THMs 3357 − 30.7 7.2 4.0 2.7 3.3 5.7 17.6
THM4 3357 − 46.5 20.7 17.3 9.5 14.5 20.9 37.5

HAA (μg/L)
crude concentrations

DCAA 3296 95.8 7.7 5.8 7.1 3.4 6.0 8.2 10.5
TCAA 3296 91.4 2.6 1.6 1.6 0.81 1.4 1.9 2.9

SG-adjusted concentrations
DCAA 3267 − 8.1 6.5 7.1 4.4 6.2 7.9 10.3
TCAA 3267 − 3.0 1.7 1.7 1.1 1.4 2.0 2.7

aAbbreviations: DBP, disinfection byproduct; THM, trihalomethane; HAA, haloacetic acid; LOD, the limit of detection; TCM, chloroform;
BDCM, bromodichloromethane; DBCM, dibromochloromethane; TBM, bromoform; Cl-THMs, chlorinated THMs; Br-THMs, brominated
THMs; THM4, total THMs; SG, specific gravity; DCAA, dichloroacetic acid; and TCAA, trichloroacetic acid.

Table 3. Distribution of Ultrasound and Delivery Measures
of Fetal Growth in Study Participants (N = 1516)a,b

fetal growth parameter
mean (±SD) or n

(%) median 25th−75th
ultrasound measures
gestational age (weeks)

second trimester 17.7 (±2.5) 17.0 16.4−17.6
third trimester 32.5 (±3.0) 31.7 30.1−34.3

AC (cm)
second trimester 12.0 (±2.8) 11.0 10.0−12.0
third trimester 28.4 (±3.2) 27.9 26.1−30.5

HC (cm)
second trimester 13.8 (±3.0) 13.0 12.0−14.0
third trimester 29.0 (±2.2) 29.0 27.0−30.0

BPD (cm)
second trimester 3.9 (±0.80) 3.6 3.4−3.9
third trimester 8.1 (±0.70) 8.1 7.6−8.6

FL (cm)
second trimester 2.4 (±0.73) 2.2 2.2−2.5
third trimester 6.1 (±0.62) 6.0 5.7−6.5

estimated fetal weight (g)
second trimester 222.4 (±165.5) 168.7 147.3−198.9
third trimester 1980.8 (±633.3) 1808.5 1510.9−2338.9

birth outcomes
gestational age
(weeks)

39.2 (±1.3) 39.1 38.4−40.0

birth weight (g) 3312.1 (±413.9) 3300.0 3000.0−3570.0
delivery mode

vaginal 465 (39.9%) − −
cesarean 703 (60.1%) − −

infant sex
male 599 (51.2%) − −
female 571 (48.8%) − −

aWe included 1301 and 1082 ultrasound measures in the second and
third trimester, respectively, and 1170 birth outcomes in the present
analysis. Fetal weight in the second and third trimesters was estimated
using the Hadlock algorithm. bAbbreviations: AC, abdominal
circumference; HC, head circumference; BPD, biparietal diameter;
and FL, femur length.
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■ DISCUSSION

In this prospective birth cohort, we found that women with
higher concentrations of blood TBM, Br-THMs, and THM4
across pregnancy trimesters had lower fetal abdominal
circumference measurements. Associations were strengthened

with blood THM concentrations measured in the first

trimester, suggesting that early pregnancy may be a potentially

vulnerable window for fetal growth. Urinary HAA concen-

trations were not associated with fetal growth parameters in

this study.

Table 4. Associations of Blood THM and Urinary HAA Concentrations from First, Second, and Third Trimesters with
Repeated Parameters of Fetal Growth z-Scores from Second and Third Trimesters, and at Birth, Respectively, Based on Linear
Mixed Models (1516 Mother−Infant Pairs, 3553 Measurements)a,c

percent change (95% CI)

DBP biomarkers Nb AC HC BPD FL fetal weight

Blood THMs (ng/L)

TCM

T1 (<7.0) 1119 0 0 0 0 0

T2 (7.0−13.1) 1119 −13.5 (−23.0, −4.0) 0.93 (−7.7, 9.5) −0.86 (−8.5, 6.7) −9.3 (−18.7, 0.12) −7.1 (−14.4, 0.18)
T3 (>13.1) 1119 −8.1 (−17.3, 1.1) −5.1 (−13.7, 3.5) −0.37 (−7.9, 7.1) −3.9 (−13.1, 5.3) −4.1 (−11.3, 3.1)
P for trend − 0.09 0.24 0.93 0.42 0.27

BDCM

T1 (<0.62) 1119 0 0 0 0 0

T2 (0.62−0.97) 1119 5.6 (−3.8, 15.0) −0.75 (−9.5, 7.9) 3.5 (−4.1, 11.1) −5.3 (−14.7, 4.1) 2.6 (−4.7, 9.9)
T3 (>0.97) 1119 4.7 (−4.6, 14.0) 2.0 (−6.8, 10.8) 4.7 (−2.9, 12.3) 5.4 (−3.9, 14.7) 2.7 (−4.6, 10.0)
P for trend − 0.32 0.39 0.13 0.25 0.48

DBCM

<60th (<0.76) 2014 0 0 0 0 0

60th−80th (0.76−1.2) 672 4.7 (−5.2, 14.6) 5.9 (−3.3, 15.1) 4.4 (−3.6, 12.4) 3.0 (−6.9, 12.9) 5.0 (−2.7, 12.7)
>80th (>1.2) 671 1.3 (−8.9, 11.5) 4.0 (−5.5, 13.5) −3.3 (−11.6, 5.0) −3.9 (−14.1, 6.3) 2.6 (−5.2, 10.4)
P for trend − 0.63 0.41 0.68 0.61 0.36

TBM

<60th (<3.9) 2014 0 0 0 0 0

60th−80th (3.9−15.7) 672 −13.5 (−23.4, −3.6) 1.6 (−7.7, 10.9) −4.2 (−12.3, 3.9) −4.8 (−14.7, 5.1) −3.8 (−11.6, 4.0)
>80th (>15.7) 671 −8.3 (−19.0, 2.4) 4.1 (−5.9, 14.1) −5.6 (−14.3, 3.1) −0.77 (−11.5, 9.9) 0.98 (−7.0, 9.0)
P for trend − 0.03 0.61 0.15 0.67 0.98

Cl-THMs

T1 (<9.1) 1119 0 0 0 0 0

T2 (9.1−15.5) 1119 −12.4 (−21.9, −2.9) 4.3 (−4.6, 13.2) 0.76 (−7.0, 8.6) −6.8 (−16.3, 2.7) −4.7 (−12.1, 2.7)
T3 (>15.5) 1119 −8.9 (−18.2, 0.36) −4.3 (−13.2, 4.6) −0.35 (−7.9, 7.3) −3.0 (−12.3, 6.3) −0.76 (−8.1, 6.5)
P for trend − 0.07 0.34 0.93 0.53 0.86

Br-THMs

T1 (<3.0) 1119 0 0 0 0 0

T2 (3.0−4.1) 1119 −11.0 (−20.2, −1.8) 1.7 (−6.8, 10.2) −4.4 (−11.8, 3.0) −6.4 (−15.6, 2.8) −2.7 (−9.9, 4.5)
T3 (>4.1) 1119 −14.2 (−23.6, −4.8) 3.8 (−4.8, 12.4) −7.5 (−15.1, 0.08) −4.1 (−13.5, 5.3) −1.9 (−9.2, 5.4)
P for trend − 0.002 0.39 0.06 0.38 0.59

THM4

T1 (<12.2) 1119 0 0 0 0 0

T2 (12.2−23.0) 1119 −11.1 (−20.4, −1.8) −1.3 (−9.8, 7.2) −1.9 (−9.4, 5.6) −10.3 (−19.6, −1.0) −6.6 (−13.8, 0.56)
T3 (>23.0) 1119 −12.6 (−21.9, −3.3) 0.36 (−8.3, 9.1) −3.5 (−11.1, 4.1) −2.4 (−11.7, 6.9) −2.9 (−10.3, 4.5)
P for trend − 0.008 0.94 0.36 0.61 0.41

SG-adjusted urinary HAAs (μg/L)

DCAA

T1 (<5.7) 1089 0 0 0 0 0

T2 (5.7−8.5) 1089 −4.8 (−14.0, 4.4) −1.1 (−10.8, 8.6) −5.7 (−13.6, 2.2) −5.7 (−15.0, 3.6) −2.7 (−10.5, 5.1)
T3 (>8.5) 1089 2.6 (−6.8, 12.0) 2.1 (−7.6, 11.8) −0.25 (−8.2, 7.8) 0.31 (−9.2, 9.8) 1.5 (−6.5, 9.5)
P for trend − 0.62 0.66 0.93 0.97 0.71

TCAA

T1 (<1.3) 1089 0 0 0 0 0

T2 (1.3−2.1) 1089 −6.4 (−15.6, 2.8) −10.8 (−19.9, −1.7) −3.4 (−11.3, 4.5) −4.8 (−14.2, 4.6) 3.1 (−4.7, 10.9)
T3 (>2.1) 1089 1.1 (−8.3, 10.5) −0.89 (−10.1, 8.3) 1.6 (−6.5, 9.7) 5.1 (−4.4, 14.6) 2.7 (−5.2, 10.6)
P for trend − 0.85 0.93 0.70 0.31 0.50

aModels were adjusted for age, body mass index at recruitment, maternal height, education level, infant sex, gravidity, folic acid usage during
pregnancy, smoking status, and alcohol intake. bNumber of samples across pregnancy trimesters. cAbbreviations: DBP, disinfection byproduct;
THM, trihalomethane; HAA, haloacetic acid; AC, abdominal circumference; HC, head circumference; BPD, biparietal diameter; FL, femur length;
T, tertile; TCM, chloroform; BDCM, bromodichloromethane; DBCM, dibromochloromethane; TBM, bromoform; Cl-THMs, chlorinated THMs;
Br-THMs, brominated THMs; THM4, sum of 4 THMs; DCAA, dichloroacetic acid; and TCAA, trichloroacetic acid.
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Blood TCM and BDCM and urinary DCAA and TCAA
were detected in ≥79.2% of the samples collected across
pregnancy trimesters, which is not unexpected given the
widespread use of chlorinated water in our study participants.28

The median concentrations of blood THM4 and urinary
TCAA in our study sample were 17.3 ng/L and 1.6 μg/L,
respectively, which were lower than that reported among
pregnant women in Wuhan City (57.1 ng/L and 7.1 μg/L,
respectively),18,24 United Kingdom (urinary TCAA: 6.1 μg/
L),42 and South Africa (urinary TCAA: 201 μg/L).43 The
difference in exposure may be explained by regional variability
in DBP concentrations in the water supply systems.28 For
instance, THM4 concentrations in the water system of Xiaogan
City (mean: 7.4 μg/L) were among the lowest levels in
previous water studies from Wuhan City (mean: 25.3 μg/L),44

United Kingdom (mean: 12.2−61.0 μg/L),45 and South Africa
(mean: 72 μg/L).46 In addition, the differences in population
ethnicity, socioeconomic status, and water-use habits may also
influence DBP biomarker concentrations.28,47,48

Several epidemiological studies have shown that higher
THM concentrations are associated with lower fetal anthro-
pometric measures at delivery, such as birth weight,15,16,49−51

birth length, and small for gestational age.52 To date, however,
few studies have explored the association of DBP biomarker
concentrations with ultrasound fetal growth parameters. Deng
and colleagues measured urinary TCAA concentrations among
332 pregnant women at the time of delivery and reported

inverse associations between urinary TCAA and ultrasound
measures of BPD, HC, and FL in male infants only.24 In
contrast, in our present study, we did not find any convincing
associations between urinary DCAA and TCAA and ultra-
sound measures of fetal growth. Inconsistency in findings
between our study and other work may be explained by the
difference in exposure concentrations among participants. All
participants in the Deng study lived in Wuhan City, whose
median urinary concentrations of TCAA were substantially
higher than that of our present cohort (8.6 vs 2.6 ng/L,
respectively). Furthermore, differences in study design (cross-
sectional vs prospective study) and the timing of exposure
assessment and ultrasound measurements (single vs repeated
measures) may account for discrepancies in study findings. In
addition, this previous study only included 332 mother−infant
pairs, which may have resulted in imprecise estimates.
To our knowledge, this current analysis is the first to

investigate the association between prenatal exposure to
THMs and ultrasound fetal growth measurements. We found
inverse associations between maternal blood TBM, Br-THM,
and THM4 concentrations and the AC z-score, which is a
sensitive predictor of restricted fetal growth,53,54 and reflects
fetal liver growth and subcutaneous fat accretion.55 In support
of our findings, animal studies have shown that gestational
exposure to THMs can lead to intrauterine growth retardation
in rodent species,56,57 probably by disturbing placental
vascularization and disrupting immune and inflammatory

Figure 2. Associations of AC z-scores with blood THM concentrations in the previous trimester (exposure at 1st trimester vs AC at 2nd trimester
and exposure at 2nd trimester vs AC at 3rd trimester) stratified by different exposure windows. Abbreviations: DBP, disinfection byproduct; THM,
trihalomethane; AC, abdominal circumference; HC, head circumference; BPD, biparietal diameter; FL, femur length; T, tertile; TCM, chloroform;
BDCM, bromodichloromethane; DBCM, dibromochloromethane; TBM, bromoform; Cl-THMs, chlorinated THMs; Br-THMs, brominated
THMs; and THM4, sum of 4 THMs.
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functions.58−60 Meanwhile, some THM molecules can cross
the placental barrier and reach the fetal liver,6 which can
inhibit calcium sequestration and the activity of cytochrome P-
450, eventually leading to disrupted fetal liver develop-
ment.61,62 Our previous research based on the same cohort
found that blood TCM, Br-THMs, and THM4 across
pregnancy trimesters were positively associated with urinary
oxidative stress biomarkers.63 Elevated maternal oxidative
stress can disrupt normal placentation and nutritional supply
to the fetus,64,65 which may result in delayed adipose
accumulation and reduced intrauterine fetal development.66,67

In addition, we observed that the inverse associations between
blood TBM concentrations and the AC z-score were modestly
higher among female infants. We previously reported that
blood TBM concentrations were associated with DNA
hypomethylation in cord blood,68 which can contribute to
impaired fetal growth.69,70 Female infants have a relatively
higher methylation status,71 which may partially explain a
heightened sensitivity to hypomethylation effects.
Interestingly, the inverse associations between blood

exposure biomarkers and the AC z-score were stronger for
first-trimester blood THM concentrations, suggesting that
early pregnancy may be a potentially vulnerable window. This
is biologically plausible given that early pregnancy is crucial for
the development of the placenta and fetal organs,72,73 which is
sensitive to environmental toxicants.74−76 Numerous epide-
miological studies have found that exposure to certain
environmental pollutants during the first trimester was
associated with reduced fetal growth parameters.77−80 Our
results also showed that THM exposures can impair fetal
growth in the second trimester, possibly via altering hormone
regulation, disrupting placental growth and/or triggering the
oxidative stress response.81,82 Early-onset growth retardation is
a significant concern given its association with various adverse
health outcomes in children and adults.83,84 However, more
mechanistic studies are needed to clarify our observed
trimester-specific associations.
The strengths of our study include its prospective design,

relatively large sample size, comprehensive determination of
exposure biomarkers for two leading DBP species (i.e., THMs
and HAAs), and repeated measurements of exposure
biomarkers and fetal growth parameters across pregnancy
trimesters. However, some limitations should be considered.
First, ultrasound fetal growth parameters were measured up to
two times for each participant, which may have been
insufficient to characterize the intrauterine fetal trajectory
throughout pregnancy. Second, blood THM and urinary HAA
concentrations were measured at a single time point during
each trimester. While our sensitivity analysis showed similar
results when we additionally corrected for recent peak
exposure events (e.g., showering and bathing), exposure
misclassification cannot be fully ruled out.28 In this case,
however, such nondifferential misclassification would tend to
bias estimates toward the null. Third, we cannot exclude
residual confounding from other unmeasured covariates (e.g.,
dietary habits, physical activity, and gene polymorphisms)85−87

and coexposure to other DBP species (e.g., haloacetonitriles,
haloketones, and nitrosamines).88,89 Fourth, the possibility of
chance findings cannot be excluded due to multiple testing.
Fifth, the generalizability of our results should be interpreted
with caution, given that we did not use nationally
representative data to estimate the fetal growth z-scores and
that a large proportion of our study participants had low

socioeconomic status and underwent cesarean delivery
(60.1%), the latter being relatively common delivery mode in
China.90 Finally, observational studies such as ours cannot
demonstrate causality.
To conclude, we found inverse associations between

prenatal blood TBM, Br-THMs, and THM4 concentrations
and fetal abdominal circumference measurements among 1516
mother−infant pairs from this Chinese birth cohort. We also
found these associations to be stronger for first-trimester blood
THM concentrations, suggesting a potentially vulnerable
window in early pregnancy. Our findings suggest that
intrauterine fetal growth is highly sensitive to THMs, even at
low exposure levels.
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