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Abstract

IMPORTANCE Although phthalate exposure during pregnancy has been associated with preterm
birth, the association of preconception exposure in either parent with preterm birth constitutes a
knowledge gap.

OBJECTIVE To examine the association of paternal and maternal preconception urinary
concentrations of biomarkers of phthalates and phthalate substitutes with singleton preterm birth.

DESIGN, SETTING, AND PARTICIPANTS This study, conducted at an academic fertility center in
Boston, Massachusetts, included a prospective preconception cohort of subfertile couples
comprising 419 mothers and 229 fathers and their 420 live-born singleton offspring born between
January 1, 2005, and December 31, 2018. Statistical analysis was performed from August 1 to October
31, 2019.

EXPOSURES Urinary concentrations of metabolites of phthalates and phthalate substitutes
obtained before conception.

MAIN OUTCOMES AND MEASURES Gestational age was abstracted from delivery records and
validated using the American College of Obstetricians and Gynecologists guidelines for births after
medically assisted reproduction. The risk ratio (RR) of preterm birth (live birth before 37 completed
weeks’ gestation) was estimated in association with urinary concentrations of 11 individual phthalate
metabolites, the molar sum of 4 di-(2-ethylhexyl) phthalate (ΣDEHP) metabolites, and 2 metabolites
of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH, a nonphthalate plasticizer substitute)
using modified Poisson regression models adjusted for covariates.

RESULTS The mean (SD) age of the 419 mothers was 34.7 (4.0) years, the mean (SD) age of the 229
fathers was 36.0 (4.5) years, and the mean (SD) gestational age of the 420 singleton children (217
boys) was 39.3 (1.7) weeks, with 34 (8%) born preterm. In adjusted models, maternal preconception
ΣDEHP concentrations (RR, 1.50; 95% CI, 1.09-2.06; P = .01) and cyclohexane-1,2-dicarboxylic acid
monohydroxy isononyl ester (MHiNCH, a metabolite of DINCH) concentrations (RR, 1.70; 95% CI,
0.89-3.24; P = .11) were associated with an increased risk of preterm birth. After additional
adjustment for prenatal ΣDEHP or MHiNCH concentrations, the association of maternal
preconception exposure to ΣDEHP and preterm birth remained robust (RR, 1.69; 95% CI, 1.17-2.44;
P = .006), while the association of maternal preconception exposure to MHiNCH and preterm birth
was attenuated (RR, 1.17; 95% CI, 0.49-2.81; P = .72). The remaining urinary metabolites examined
in either parent showed no association with preterm birth.

CONCLUSIONS AND RELEVANCE In this prospective cohort of subfertile couples, maternal
preconception exposure to ΣDEHP metabolites was associated with an increased risk of preterm
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Abstract (continued)

birth. The results suggest that female exposure to select phthalate plasticizers during the
preconception period may be a potential risk factor for adverse pregnancy outcomes, which may
need to be considered in preconception care strategies.

JAMA Network Open. 2020;3(4):e202159. doi:10.1001/jamanetworkopen.2020.2159

Introduction

Preterm birth is the factor most strongly associated with neonatal mortality and long-term morbidity
globally.1-3 In the United States, 1 in 10 pregnancies is delivered preterm, accounting for
approximately 380 000 births per year.4 Beyond the increased risk of early death, the long-term
consequences among surviving infants may be associated with neurologic, respiratory, and
gastrointestinal disorders as well as cardiometabolic disease during adulthood.1,5-8

Preterm birth is a complex and heterogeneous condition with multiple etiopathogenic
processes triggering early parturition.3,9 Although some risk factors for preterm birth have been
identified, including maternal age, race/ethnicity, socioeconomic status, smoking during pregnancy,
infection, and multiple gestations, these factors account for less than half of all cases, and underlying
mechanisms remain largely unknown.1,3,10-13 There is increasing evidence of an association between
environmental exposures during pregnancy (including air pollution and chemicals such as
phthalates) and preterm birth.14-20

Phthalates are a family of chemicals widely used in many consumer products. Phthalates are
known reproductive and developmental toxicants in experimental animals21,22 and are suspected to
produce similar effects in humans.23-25 Human exposure to phthalates is ubiquitous in the United
States, Europe, and elsewhere.26-28 Regulation of some phthalates has prompted the use of
plasticizer replacement chemicals such as 1,2-cyclohexane dicarboxylic acid diisononyl ester
(DINCH). Substitution of phthalates with DINCH warrants further screening in human populations29

because its metabolites are biologically active and understudied.30

The maternal preconception period remains an important but largely unexplored critical
window of exposure for perinatal and infant outcomes.31 Even less is known about the association of
paternal preconception exposures with offspring health.32 Environmental-epigenetic mechanisms
in the preconception and periconception period are likely associated with the etiopathologic
characteristics of preterm birth.33-35 However, studies addressing the association of parental
preconception exposure to phthalates with outcomes in gametes, fertilization, implantation,
placentation, and gestation are limited.31 Therefore, we aimed to investigate whether higher paternal
and maternal preconception urinary concentrations of metabolites of phthalates and phthalate
substitutes were associated with an increased risk of preterm birth among couples undergoing
fertility care.

Methods

Study Cohort
The Environment and Reproductive Health (EARTH) Study is an ongoing prospective preconception
cohort of couples seeking fertility evaluation and medically assisted reproductive treatment at the
Massachusetts General Hospital Fertility Center. The EARTH Study was designed to investigate
environmental and nutritional factors for both women and men across preconception and prenatal
periods in association with fertility, pregnancy, and birth outcomes. The cohort has been described
elsewhere.36 In brief, women aged 18 to 46 years and men aged 18 to 55 years, using their own
gametes, were eligible. Participants enrolled independently or as a couple and were followed up from
study entry through their fertility care, pregnancy, and labor and delivery. The present analysis
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included 419 female and 229 male EARTH cohort participants who gave birth to a singleton infant
between January 1, 2005, and December 31, 2018, for whom we had at least 1 urine sample
quantified for biomarker metabolites during the period before conception of the index pregnancy.
One singleton live birth was from a male participant enrolled without a female partner, thus leaving
228 couples (Figure). Trained staff explained the study details to participants and answered
questions before obtaining written informed consent. The study was approved by the Massachusetts
General Hospital, Harvard T.H. Chan School of Public Health, and the Centers for Disease Control and
Prevention Institutional Review Boards. This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline.

Exposure Assessment
Male and female participants provided 1 spot urine sample at study entry. Women provided up to 2
additional spot urine samples per fertility treatment cycle: one obtained during the follicular phase of
the cycle (days 3-9) and the other on the day of the fertility procedure. Men provided an additional
spot urine sample per cycle on the day when their female partner underwent the fertility procedure.
Women also provided 1 spot urine sample per trimester at a median of 6, 21, and 35 weeks’ gestation.
We used the biomarker concentrations from the multiple urine samples obtained per participant
from study entry up to and including the samples from the treatment cycle of conception of the index
birth to estimate the mean exposure in the preconception window.

Urine samples were collected in polypropylene specimen cups, and the specific gravity (SG) of
each sample was quantified with a handheld refractometer (National Instrument Company Inc). The
urine samples were then divided into aliquots, frozen for long-term storage at −80 °C, and shipped
on dry ice overnight to the Centers for Disease Control and Prevention (Atlanta, Georgia). For each
urine sample, the concentrations of metabolites of phthalates and phthalate substitutes were
quantified using solid-phase extraction coupled with high-performance liquid chromatography–
isotope dilution tandem mass spectrometry.37 The concentrations of the following phthalate
metabolites were measured: monoethyl phthalate, mono-n-butyl phthalate (MBP), mono-isobutyl
phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP),

Figure. Participant Flowchart of Metabolites of Phthalates and Phthalate Substitutes Data Available in the
Environment and Reproductive Health (EARTH) Study, 2005-2018.

423 Singletons born to EARTH Study
participants from 2005 to 2019

420 Singletons born to EARTH Study
participants from 2005 to 2018
with measured urine biomarker
data

3 Infants excluded with no
measured urine biomarker
data to date

Maternal preconception exposure
419 With urinary DEHP, MBP,

MiBP, MBzP, MCPP, and MEP
400 With urinary MCOP and MCNP
205 With urinary MHiNCH
166 With urinary MCOCH

Paternal preconception exposure
229 With urinary DEHP, MBP,

MiBP, MBzP, MCPP, and MEP
219 With urinary MCOP and MCNP

99 With urinary MHiNCH
78 With urinary MCOCH

Couplesa (n = 228)
228 With urinary DEHP, MBP,

MiBP, MBzP, MCPP, and MEP
212 With urinary MCOP and MCNP

97 With urinary MHiNCH
75 With urinary MCOCH

Maternal prenatal exposure
386 With urinary DEHP, MBP,

MiBP, MBzP, MCPP, and MEP
358 With urinary MCOP and MCNP
186 With urinary MHiNCH
148 With urinary MCOCH

DEHP indicates di(2-ethylhexyl) phthalate; MBP,
mono-n-butyl phthalate; MiBP, mono-isobutyl
phthalate; MBzP, monobenzyl phthalate; MCPP, mono
(3-carboxypropyl) phthalate; MCOP,
monocarboxyisooctyl phthalate; MCNP,
monocarboxyisononyl phthalate; MEP, monoethyl
phthalate; MHiNCH, cyclohexane-1,2-dicarboxylic acid
monohydroxy isononyl ester; and MCOCH,
cyclohexane-1,2-dicarboxylic acid
monocarboxyisooctyl ester.
a One male participant joined without a female

partner, leaving 228 couples.
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mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP),
mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(3-carboxypropyl) phthalate,
monocarboxyisooctyl phthalate, and monocarboxyisononyl phthalate. The urinary concentrations of
2 DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) and
cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were also measured in a
subset of participants (Figure). The limits of detection (LOD) ranged from 0.1 to 1.2 ng/mL.
Concentrations below the LOD were assigned the LOD divided by the square root of 2.38

We calculated the molar sum of 4 di(2-ethylhexyl) phthalate (DEHP) metabolites by dividing
each metabolite concentration by its molecular weight and then summing:
ΣDEHP = {[MEHP × (1/278.34)] + [MEHHP × (1/294.34)] + [MEOHP × (1/292.33)] + [MECPP × (1/308.33)]}.
We multiplied the molar sum by the molecular weight of MECPP (308.33) to convert ΣDEHP to
nanograms per milliliter. We also calculated a summary measure of phthalate metabolites with
antiandrogenic properties (ie, MEHP, MEHHP, MEOHP, MECPP, MBP, MiBP, and MBzP), as previously
described.39 The summary estimate (ΣAAPhthalates) was calculated by multiplying the SG-adjusted
concentration of each of these 7 individual metabolites by their antiandrogenic potency and
summing the weighted concentrations:
ΣAAPhthalates = MBP + (0.24 × MiBP) + (0.26 × MBzP) + (0.61 × MEHP) + (0.61 × MEHHP) +
(0.61 × MEOHP) + (0.61 × MECPP).39,40

Outcome Assessment
We abstracted gestational age in days from delivery records and validated it using the American
College of Obstetricians and Gynecologists guidelines for dating births after medically assisted
reproduction.41 The fertility treatment setting permitted us to estimate gestational age with high
accuracy using in vitro fertilization protocol dates, substantially reducing the number of
misclassifications of preterm births due to inaccuracies in pregnancy dating.42 For in vitro fertilization
pregnancies, the gestational age was estimated as (Outcome Date − Transfer Date + 14 Days + Cycle
Day of Transfer).41 For intrauterine insemination and nonmedically assisted or naturally conceived
pregnancies, we used the birth date minus the cycle start date or the last menstrual period date.
Preterm birth was defined as any live birth less than 37 completed weeks’ gestation (<259 days). We
corrected for 3 pregnancies for which the medical delivery record estimates (criterion standard)
differed from the American College of Obstetricians and Gynecologists–based estimates by more
than 6 days through additional delivery record verification.

Covariates
Data on paternal and maternal age, educational level, race/ethnicity, and smoking status were
obtained from self-reported questionnaires administered at enrollment. Research study staff
measured the height and weight of the participants at baseline, and body mass index was calculated
as weight in kilograms divided by height in meters squared. The treating infertility physician
diagnosed the underlying cause of infertility using the Society for Assisted Reproductive Technology
(ART) definitions.43,44 The type of medically assisted reproduction used in the conception cycle of
the index birth was abstracted from the electronic medical records by trained study staff and
dichotomized as ART procedures (all in vitro fertilization protocols, including intracytoplasmic sperm
injection) vs non-ART protocols (all intrauterine insemination or ovarian stimulation protocols as well
as nonmedically assisted or naturally conceived).

Statistical Analysis
Statistical analysis was performed from August 1 to October 1, 2019. To account for urinary dilution,
each biomarker concentration was multiplied by [(SGp − 1)/(SGi − 1)], where SGi is the SG of the
participant’s sample and SGp is the mean SG for all male (mean, 1.016) or all female (mean, 1.015)
participants included in the study.45 The SG-adjusted biomarker concentrations were natural
log-transformed to standardize the distribution and reduce the effect of extreme values. We
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estimated the geometric mean paternal and maternal preconception biomarker concentrations by
averaging each participant’s natural log concentration obtained from study entry (baseline) and at
each treatment cycle up to and including the cycle of the index conception of the singleton offspring.
We calculated descriptive statistics for biomarker concentrations and the percentage of values below
the LOD, as well as Spearman correlation coefficients for each natural log concentration between
couples (paternal vs maternal preconception and preconception vs prenatal windows, using the
mean concentration across 3 trimesters).

We examined the clinical and demographic characteristics, reported as mean (SD) values or as
numbers and percentages, of study participants in the total cohort. We fit modified Poisson
regression models to evaluate the association of continuous urinary biomarker concentrations with
dichotomous preterm birth outcomes.46 Modified Poisson models were fit by using a log-link
function with a Poisson distribution to yield estimated risk ratios (RRs) and 95% CIs for preterm birth
for every natural log unit increase in metabolite concentration. We fit a separate model for each of
the 13 individual biomarkers of interest as well for the ΣDEHP and ΣAAPhthalates summary
measures.

We selected covariates a priori as potential confounders based on substantive knowledge using
a directed acyclic graph (eFigure in the Supplement) and examined unadjusted and covariate-
adjusted results. All statistical models were adjusted for ART vs non-ART to control for mode of
conception and indirectly for the underlying cause of infertility. Maternal preconception window
covariate-adjusted models included maternal age and body mass index (continuous), maternal
educational level (<college, college, or graduate degree), smoking status (never smoked or ever
smoked, defined as a current or former smoker), and treatment type (ART or non-ART). Paternal
preconception window covariate-adjusted models included paternal and maternal age and body
mass index (continuous), paternal and maternal smoking (ever or never), maternal educational level
(<college, college, or graduate degree), and treatment type (ART or non-ART). We further adjusted
for partner’s preconception phthalate concentrations and maternal prenatal phthalate
concentrations (averaged natural log concentrations across 3 trimesters), in additional covariate-
adjusted models. All statistical analyses were performed with SAS, version 9.4 (SAS Institute Inc).
Statistical tests were 2-tailed, and P < .05 was considered statistically significant.

Sensitivity Analysis
First, we restricted the maternal preconception analyses to 228 couples to obtain more comparable
results across models within couples. Second, to examine potential differences by infant sex, we
stratified analyses and estimated sex-specific RRs and 95% CIs. Effect-measure modification P values
were calculated for the interaction term (sex × urinary biomarker concentration). P < .20 was
considered potential evidence of effect modification by infant sex on the multiplicative scale. Third,
because our analyses on DINCH metabolites MHiNCH and MCOCH were limited by low detection
rates, we dichotomized these parental preconception biomarkers by their median values and fit
modified Poisson regression models for dichotomous DINCH metabolite concentrations and preterm
birth, adjusting for covariates. We also fit multivariable general linear regression models for
continuous parental preconception concentrations of MHiNCH and MCOCH with continuous
gestational age to address concerns of lower power given the smaller sample size and therefore
smaller number of cases of preterm birth in this subset in which DINCH biomarkers were measured.
Coefficient estimates and 95% CIs represent the mean difference in gestational age for each natural
log unit increase in urinary DINCH biomarker concentration. To assess the linearity assumption of
our positive maternal DEHP results, we fit models across biomarker quartiles and estimated P values
for trend across quartiles.
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Results

Study Cohort
The study cohort included 419 mothers (mean [SD] age, 34.7 [4.0] years; mean [SD] body mass
index, 24.1 [4.3]) and 229 fathers (mean [SD] age, 36.0 [4.5] years; mean [SD] body mass index, 27.7
[6.1]) (228 couples) at the time of enrollment (Table 1). Among the 420 singleton infants, the mean
(SD) gestational age was 39.3 (1.7) weeks, with 34 infants (8%) born preterm (Table 2). The mean
(SD) birth weight was 3363 (551) g, with 20 infants (5%) born with low birth weight (<2500 g).

Urinary Biomarker Concentrations
In total, 1700 maternal preconception urine samples and 590 paternal preconception urine samples
were analyzed for phthalate and DINCH metabolites. Women provided a mean (SD) of 4.1 (3.0) urine
samles (median, 3 urine samples; interquartile range, 2-5 urine samples), and men provided a mean
(SD) of 2.6 (1.7) urine samples (median, 2 urine samples; interquartile range, 1-3 urine samples). The
distribution of metabolites, detection frequencies, and correlations can be found in eTable 1 and
eTable 2 in the Supplement.

Maternal Preconception Window
After adjusting for covariates, we found that maternal preconception urinary ΣDEHP metabolite
concentrations were associated with increased risk of preterm birth (RR, 1.50; 95% CI, 1.09-2.06;
P = .01). Risk ratios increased slightly in models accounting for maternal prenatal ΣDEHP
concentrations (RR, 1.69; 95% CI, 1.17-2.44; P = .006) (Table 3). This association appeared to be
stronger for male infants (RR, 2.01; 95% CI, 1.17-3.45) compared with female infants (RR, 1.22; 95% CI,
0.79-1.88) (effect-measure modification P = .17) (eTable 3 in the Supplement). Quartile analysis
showed a positive dose-response association between maternal preconception urinary DEHP

Table 1. Parental Characteristics From Participants in the Environment and Reproductive Health Study,
2005-2018

Characteristic

Participants, No. (%)

Mothers (n = 419) Fathers (n = 229)
Age, y

Mean (SD) 34.7 (4.0) 36.0 (4.5)

>35 173 (41) 128 (56)

Race/ethnicity

White 355 (85) 201 (88)

Black 11 (3) 4 (2)

Asian 36 (9) 15 (7)

Other 17 (4) 9 (4)

Body mass indexa

Mean (SD) 24.1 (4.3) 27.7 (6.1)

>25 132 (32) 158 (69)

Educational level

<College 55 (13) 76 (33)

College graduate 137 (33) 64 (28)

Graduate degree 227 (54) 85 (37)

Smoking status

Never 317 (76) 159 (69)

Ever (former or current) 102 (24) 70 (31)

Infertility diagnosis

Male factor 101 (24) 70 (31)

Female factor 132 (32) 65 (28)

Unexplained 186 (44) 94 (41)

Primiparous 348 (83) NA

Abbreviation: NA, not applicable.
a Calculated as weight in kilograms divided by height

in meters squared.
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concentrations and preterm birth (eTable 4 in the Supplement). There was some suggestion that
mothers with higher preconception urinary MHiNCH concentrations had an increased risk of preterm
birth in the main covariate-adjusted model (RR, 1.70; 95% CI, 0.89-3.24; P = .11) (Table 3). This
association was attenuated by additional adjustment for prenatal MHiNCH concentrations (RR, 1.17;
95% CI, 0.49-2.81; P= .72). In sensitivity analyses, maternal preconception MHiNCH concentrations
above the median were associated with a suggested increased risk of preterm birth (RR, 4.02; 95%
CI, 0.84-19.30; P = .08). Maternal preconception MHiNCH concentrations were associated with
reduced gestational age (β = −2.01 days; 95% CI, −3.74 to −0.29 days; P = .02) (eTable 6 in the
Supplement). No other maternal preconception metabolites were associated with the risk of preterm
birth (Table 3).

Paternal Preconception Window
Paternal urinary ΣDEHP metabolite concentrations were associated with an increased risk of preterm
birth in covariate-adjusted models (RR, 1.41; 95% CI, 0.94-2.11; P = .09) (Table 4). However, this
association was markedly attenuated toward the null in models accounting for maternal
preconception ΣDEHP concentrations (RR, 1.06; 95% CI, 0.66-1.68; P = .82). The results of MHiNCH
and MCOCH models in association with preterm birth were imprecise owing to low power. In
sensitivity analyses, paternal preconception MHiNCH or MCOCH concentrations were not associated
with continuous gestational age (eTable 6 in the Supplement). The remaining paternal preconception
biomarkers showed little evidence of an association with preterm birth (Table 4).

Couple-Based Sensitivity Analyses
In analyses restricted to 228 couples, associations of maternal preconception ΣDEHP metabolite
concentrations with preterm birth remained robust in covariate-adjusted models (RR, 2.30; 95% CI,
1.46-3.60; P < .001), as well as in models additionally adjusting for prenatal (RR, 4.98; 95% CI, 2.31-
10.75; P < .001) or paternal preconception (RR, 2.37; 95% CI, 1.39-3.70; P = .001) ΣDEHP
concentrations (eTable 5 in the Supplement). Maternal preconception MHiNCH concentrations were
associated with an increased risk of preterm birth among couples in an unadjusted model (RR, 3.48;
95% CI, 0.91-13.36; P = .07); however, associations became imprecise in models adjusting for
covariates (RR, 3.15; 95% CI, 0.23-43.95; P = .39) (eTable 5 in the Supplement).

Table 2. Birth Characteristics of Singleton Infants From the Environment and Reproductive Health Study,
2005-2018

Characteristic

Singleton infants
1 or both parents in study
(n = 420)

Both parents in study
(n = 228)

Male, No. (%) 217 (52) 116 (51)

Birth weight, g

Mean (SD) 3363 (551) 3353 (516)

Range 1090-5040 1750-5040

Low birth weight (<2500 g), No. (%) 20 (5) 8 (4)

Gestational age at birth, wk

Mean (SD) 39.3 (1.7) 39.3 (1.5)

Range 29-42 33-42

Preterm birth, No. (%)

<37 wk 34 (8) 18 (8)

<32 wk 4 (1) 0

Mode of conception, No. (%)

Assisted reproductive technologya 240 (57) 138 (61)

Non–assisted reproductive technologyb 180 (43) 90 (39)

a Fresh or frozen in vitro fertilization protocols,
including intracytoplasmic sperm injection.

b Intrauterine insemination with or without ovulation
induction or stimulation, ovulation induction or
stimulation with timed intercourse, or nonmedically
assisted or naturally conceived.
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Discussion

In this prospective cohort of subfertile couples, urinary ΣDEHP metabolite concentrations measured
in mothers before conception were associated with a higher risk of singleton preterm birth. The
results of ΣDEHP models were robust to adjustments for prenatal exposure. This association was
more pronounced among male infants than female infants. Couple-based analyses confirmed the
results for an association between maternal preconception ΣDEHP concentrations and increased risk
of preterm birth. Maternal preconception MHiNCH concentrations were suggestively associated with
an elevated risk of preterm birth. These results were further confirmed in a sensitivity analysis
examining gestational age continuously. We found that a log-unit increase in maternal MHiNCH
concentrations was associated with a reduction in gestational age by approximately 2 days. However,
this association was partially explained by prenatal MHiNCH concentrations and should be
interpreted cautiously owing to the small numbers and low detection frequencies. Future studies
should confirm or rule out a potential association with this emerging phthalate substitute. We
observed little evidence of associations between paternal preconception phthalate metabolites or
biomarkers of plasticizer substitutes and preterm birth.

To our knowledge, this is the first study evaluating couples’ exposure to phthalate metabolites
during the preconception window and its association with preterm birth. Previous human studies of
preterm birth have assessed phthalate exposure during the prenatal window. Our maternal
preconception ΣDEHP findings are compatible with most prior research,14,16,17,47,48 although not
all,49,50 on prenatal phthalate exposure. Ferguson and colleagues14,17 used a nested case-control
design and reported robust dose-response associations of ΣDEHP and MBP with increased odds of
overall preterm birth and spontaneous preterm birth among North American women. A case-control
study by Meeker et al16 also found a significantly increased risk of preterm birth in association with
urinary concentrations of ΣDEHP and MBP among Mexican women. Gao et al47 reported positive
associations between prenatal DEHP metabolites in Chinese mothers and preterm birth. In contrast,
Ferguson et al50 found no association between prenatal DEHP metabolites and preterm birth in a
recent analysis among Puerto Rican mothers, whereas Adibi et al49 reported inverse associations
between prenatal DEHP metabolites and preterm birth among North American mothers. In a recent
systematic review of the literature, Radke et al18 concluded that exposure to DEHP was associated
with the risk of preterm birth, with a moderate level of evidence. In addition, studies have evaluated
prenatal phthalates in association with continuous gestational age with heterogeneous
epidemiologic methods; some reported shorter gestations,51-54 while others found inconsistent55,56

or contrasting49,57 results.
Our findings support a novel hypothesis: maternal phthalate exposure during the critical period

before conception may be associated with shorter gestation. Although, to our knowledge,
mechanistic data on preconception exposures are scarce, this latent association could be compatible
with the established association of DEHP with the ovary and its related epigenetic modifications in
oocytes.22,23,58,59 In addition, DEHP metabolites may disrupt nuclear receptors, including
peroxisome proliferator–activated receptors, the androgen receptor, and estrogenic
receptors,25,60-62 and they may increase oxidative stress and inflammation in the ovary and
endometrium.63-65 It is accepted that early disruption to peri-implantation processes such as
alterations in embryo spacing or development, decidualization, and placentation may perpetuate
throughout pregnancy, manifesting later as preterm birth, among other adverse outcomes.66 Based
on previous results from the EARTH Study team and those of others, including fertile populations,
we hypothesize that an early action of DEHP metabolites at the ovary may interfere with normal
fertility and implantation processes,67,68 predisposing to a syndrome of complications throughout
gestation that may be associated with altered placental function,69,70 embryo and fetal growth
restriction,71 preeclampsia,72 pregnancy loss,73 and ultimately preterm birth. Of relevance for
preventive care, this syndrome could have its roots in the preconception or periconception period.74
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Strengths and Limitations
This study has some strengths. A major strength was the opportunity to assess maternal and paternal
phthalate exposure before conception. Although the generalizability of our findings to fertile couples
is uncertain, our results are consistent with those of previous studies reporting phthalate-
associated adverse pregnancy outcomes in both subfertile and fertile populations, including a
preconception cohort of fertile couples in which maternal preconception phthalate exposure was
associated with reductions in gestational age and birth weight.75 In addition, the ongoing follow-up
of the EARTH Study allowed for a timely assessment of the phthalate substitute DINCH; however,
continued follow-up will allow us to strengthen this evidence. Another strength was the use of
multiple urine samples, resulting in a more precise exposure assessment while reducing exposure
misclassification and its expected attenuation bias.76 However, some degree of misclassification
cannot be ruled out given the short biological half-lives and episodic nature of exposure to these
nonpersistent chemicals. There has been recent interest in examining the association between the
modification of environmental chemicals and preterm birth by levels of stress in pregnancy.77

Unfortunately, owing to the absence of any stress assessment in the EARTH Study, we could neither
adjust for nor examine this association.

This study also has some limitations. One limitation was the modest number of preterm birth
cases, which precluded us from studying clinical subtypes of preterm birth. Given that previous
research has shown elevated odds of spontaneous preterm birth in association with prenatal
phthalate exposure,14 future work with more cases should allow for the examination of subtypes of
preterm birth. We also had limited power to detect sex-specific differences; these results should be
interpreted with caution. We acknowledge that multiple comparisons were performed, and thus we
cannot rule out that some of the associations could be due to chance. However, this possibility
appears unlikely given the consistency of our results for the maternal preconception window
showing positive associations with specific metabolites of DEHP (or phthalate substitutes), the
absence of any associations within the paternal preconception window across all of the metabolites
examined, and the attenuation of any potential paternal finding after accounting for maternal
preconception biomarker exposure. Furthermore, the maternal preconception DEHP associations
remained robust and internally consistent across all of the models analyzed. Last, our significant
results have biological underpinnings from prior toxicologic studies and are consistent with previous
epidemiologic evidence.

Conclusions

In this prospective study, maternal preconception urinary ΣDEHP metabolite concentrations were
associated with an increased risk of preterm birth. Our results suggest that female exposure to DEHP
before conception might be an unrecognized risk factor for adverse pregnancy outcomes, often
overlooked in clinical practice. These findings may have important clinical and public health
implications, given the ubiquity of DEHP exposure, the importance of the outcome, and that
prevention strategies rarely focus on preconception care. Although future studies should validate
these associations, it is appropriate to inform couples planning conception about measures to reduce
phthalate exposure.
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